A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm

نویسندگان

  • Charless C. Fowlkes
  • Cris L. Luengo Hendriks
  • Soile V.E. Keränen
  • Gunther H. Weber
  • Oliver Rübel
  • Min-Yu Huang
  • Sohail Chatoor
  • Angela H. DePace
  • Lisa Simirenko
  • Clara Henriquez
  • Amy Beaton
  • Richard Weiszmann
  • Susan Celniker
  • Bernd Hamann
  • David W. Knowles
  • Mark D. Biggin
  • Michael B. Eisen
  • Jitendra Malik
چکیده

To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos. We establish the method's accuracy by showing that relationships between a pair of genes' expression inferred from the model are nearly identical to those measured in embryos costained for the pair. We present a VirtualEmbryo containing data for 95 genes at six time cohorts. We show that known gene-regulatory interactions can be automatically recovered from this data set and predict hundreds of new interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A topographical map of spatiotemporal patterns of gene expression.

A recent study by Folkes et al. in Cell generated a 3D atlas of gene expression for the Drosophila blastoderm embryo using a new approach for image registration. This virtual embryo allows in silico multiplexing of in situ hybridizations and lays the groundwork for new insights into gene regulatory networks.

متن کامل

FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution

The datasets on gene expression are the valuable source of information about the functional state of an organism. Recently, we have acquired the large dataset on expression of segmentation genes in the Drosophila blastoderm. To provide efficient access to the data, we have developed the FlyEx database (http://urchin.spbcas.ru/flyex). FlyEx contains 4716 images of 14 segmentation gene expression...

متن کامل

Constructing a Quantitative Spatio-temporal Atlas of Gene Expression in the Drosophila Blastoderm

SUMMARY To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each co-stained for a reference gene and one of a set of genes of interest, and builds a model Vir...

متن کامل

A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate

In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression...

متن کامل

Quantitative imaging of gene expression in Drosophila embryos.

Quantitative measurements derived using sophisticated microscopy techniques are essential for understanding the basic principles that control the behavior of biological systems. Here we describe a data pipeline developed to extract quantitative data on segmentation gene expression from confocal images of gene expression patterns in Drosophila. The pipeline consists of image segmentation, backgr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2008